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When a round object rolls down a decline, the amount by which the object’s surface slips on the
ramp can vary. Here, the degree of slippage will be analyzed and compared to attributes like
decline angle, friction, and rotational inertia.

1 Theory
In a Newtonian sense, our rolling object
experiences three forces: gravity, normal forces
from the ramp, and friction against the ramp.
If ϕ is the angle the ramp makes with the
horizontal, g is gravitational acceleration, and f
is the frictional force, then a rolling object of
mass M , moment of inertial I, radius R,
acceleration a, and rotational acceleration α is
described by the following equations:

Ma = Mg sinϕ− f

Iα = −Rf

If the object is slipping, the frictional force is
kinetic in nature and its magnitude is a
constant multiple of the normal force. Given
coefficient of friction µ, in the case of slipping,

f = µMg cosϕ

Thus in the case of slipping, a and α are such
that:

a = g sinϕ− µg cosϕ

α = −1

I
RµMg cosϕ

If the object is not slipping, the acceleration
and angular acceleration are geometrically
related by the equation

a = −αR

In the event of no slipping, the above equation
can be substituted into the equations of motion.

Ma = Mg sinϕ− f =⇒ f = Mg sinϕ−Ma

I
−a

R
= −Rf =⇒ f =

Ia

R2

Mg sinϕ−Ma =
Ia

R2

a =
Mg sinϕ

M + I
R2

= a =
MR2g sinϕ

MR2 + I

f =
Ia

R2
= f =

MIg sinϕ

MR2 + I

α =
−a

R
= α =

−MRg sinϕ

MR2 + I

Additionally, in the case of no slippage, the
frictional force is static in nature and its
magnitude is bounded such that
f ≤ µMg cosϕ. Thus,

MIg sinϕ

MR2 + I
≤ µMg cosϕ

tanϕ ≤ µ

I
(MR2 + I)

Since 0 ≤ ϕ ≤ (2π)
4 , tan for this range is

injective. Thus,

ϕ ≤ arctan
(µ
I
(MR2 + I)

)
Let β = arctan

(µ
I (MR2 + I)

)
.

ϕ ≤ β

Therefore, the object is not slipping if and only
if ϕ ≤ β. Thus the object is slipping if and only
if ϕ > β. β is the critical angle.
Furthermore, a sensible unitless quantity can be
derived by comparing a to Rα. When there is
no slip,

a

Rα
= −1

When there is slip,

a

Rα
=

−Ig sinϕ+ Iµg cosϕ

R2µMg cosϕ
=

a

Rα
=

I

MR2

(
1− 1

µ
tanϕ

)
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2 Experiment

The above expressions can be confirmed
experimentally. A thick cylindrical shell was
rolled down a decline at several different angles.
The shell had a mass of 0.452kg .
It had an outer radius of 0.0564m .
Based on the above and its inner radius of
0.0482m , the rotational inertial was calculated
to be 0.00124(395)kg ·m2 .

2.1 Acceleration
As the cylinder was set into rolling motion by
gravity down the decline, the magnitude of its
displacement and the total angle moved was
tracked. From this data over time, a quadratic
regression was performed. This process was
repeated for each angle of decline. Using the
regression data, both the linear acceleration and
angular acceleration were extracted. Below, the
error shown is for a 96.875% confidence interval.

Figure 1: Linear Acceleration
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Figure 2: Angular Acceleration
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2.2 Regression residuals
The regression residual plots reveal that
acceleration is not exactly constant. There is
some oscillation which is reminiscent of the
rotation of the cylinder. It can be reasoned that
the point of motion tracking for each trial was
not exactly centered.

Figure 3: Distance Quadratic Residuals, Part 1
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For steeper angles, there is an apparent skew in
the residuals. This suggests that a variable
force is present, which could be air resistance or
something else. Even so, these residual values
are only on the order of millimeters, and the
motion is well correlated to a quadratic curve.

Figure 4: Distance Quadratic Residuals, Part 2
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The regression residuals for angle over time
show a bit of a skew. A mild oscillation in
phase with the rotation is seen, suggesting the
cylinder may be slightly unbalanced.

Figure 5: Angle Quadratic Residuals, Part 1
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For steeper angles, the cylinder did not rotate
as much, hence a longer period for the slight
oscillation.

Figure 6: Angle Quadratic Residuals, Part 2
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3 Experiment vs. Model
The degree and possible sources of error have
been identified. In all, the quadratic regressions
describe the motion of the cylinder quite well.
The r2 values for each quadratic regression
were no lower than 0.9985, with only a few
outliers below 0.9995. This suggests that the
linear and angular accelerations of the cylinder
are constant. As shown by the model derived

before, the unitless quantity a
Rα is constant

below the critical angle and linear with tanϕ
above. Thus, the transition between no slipping
and slipping can be illustrated by identifying a
change in slope of the graph of a

Rα over tanϕ.

Figure 7: Transition from no slip to slip
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The graph agrees with the model; the
magnitude of a

Rα is indeed 1 before the critical
angle.
The point at ϕ = 0.544 is such that the error
bar misses the value −1. Thus it can be
concluded that the critical angle is between
0.466 and 0.544.
The formula for the critical angle and the
formulas for a

Rα before and slip shows that
precisely at the critical angle, both formulas
agree at −1. Therefore a linear regression can
be performed on the slipping half of the data,
and its intersection with the value −1 should lie
at the value of the tangent of the critical angle.
This regression was performed to determine
that the critical angle is 0.558± 0.126 (with
96.875% confidence). However, this range
completely subsumes the range between 0.466
and 0.544, suggesting that there is simply not
enough data to precisely calculate the critical
angle.
If the critical angle was known for certain, the
coefficient of friction could be calculated using
the critical angle’s formula.

µ =
I tanβ

MR2 + I

If the critical angle really was 0.558, the
coefficient of friction would be about 0.289.
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Below the critical angle, the acceleration should
be proportional to sinϕ. Specifically,

a =
MR2g

MR2 + I
sinϕ

So in our case, the acceleration should be
proportional to sinϕ by a factor of 5.260m/s2 .
Below, the true acceleration is compared to
5.260m/s2 sinϕ.

Figure 8: Linear Acceleration
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It is visible that the results don’t entirely agree.
This could suggest that the video data was
inaccurate or incorrectly measured, or possibly
that the moment of inertia was actually higher
than calculated.
Beyond the critical angle, angular acceleration
should be proportional to cosϕ.

α = −1

I
RµMg cosϕ

In our case the angular acceleration should be

proportional to cosϕ by a factor of
−201.041µHz 2.

Figure 9: Angular Acceleration
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The slope found by linear regression is
−163.361Hz 2 ± 105.221Hz 2, leaving the value
of µ to be in the range of 0.813± 0.523. The
error is so large that this result has little
significance; it is very plausible for the true
coefficient to lie anywhere within this large
range.

4 Conclusion

The model successfully described the cylinder
rolling down the ramp. While the exact
coefficient of friction and critical could not be
calculated, ranges were found and it was
demonstrated that with more precise and
numerous data, these values could be
determined precisely.
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