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Different types of oscillating motion are to be observed and analyzed in this lab. An
approximately Hookean spring will be compared to a non-Hookean rubber band in oscillation.

1 Springs

A spring was hung from a fixed point and on it was hung a mass of 0.231kg. The mass and
spring end was pulled down by a couple centimeters and released while the position of the mass
and force at the top of the spring were measured over time.

Here is a graph of the displacement over time with a dampened harmonic motion curve
superimposed. The origin of displacement in this case is the equilibrium position of the mass
while it rests upon the spring.

Figure 1: Position over time
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The oscillating motion stays relatively stable in amplitude, but a slow decrease over time is
observed due to resistive forces.

The angular frequency of the motion is estimated at 8.319 Hz. Since this is a non-linear model, it
is difficult to obtain the error of this estimate.
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Here is a graph of the force as a function of the length of the stretched spring with a linear
regression superimposed. The length here refers to the total length of the spring at any given time.

Figure 2: Force over stretch length
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The data is evidently quite linear. The slope of this graph can be used to predict the spring
constant to be (17.257 £ 0.1275) N/m (with 96.875% confidence).

It is interesting to note that the force is higher while stretching than for compressing parts of the
motion. This suggests that the work done by gravity onto the spring while stretching is more
than the work that is returned from the spring. This is in line with the dampening of the motion,
suggesting that energy is being taken through friction and other resistive forces.

For a perfectly Hookean system, the spring constant would equal the mass of the load on the
spring times the square of the angular frequency. Based on the spring constant calculation and
the angular frequency estimate of 8.319 Hz, the mass of the system would independently be
calculated to be about 0.249 kg . The error of this mass estimate due to the error in the spring
constant alone is 0.001842 kg .

While the load on the end of the spring was in fact 0.231 kg, the spring itself has a mass of
0.015kg . Skipping the relevant calculus, a good approximation equates the motion of the spring
and mass system to the motion of a massless spring of the same modulus and a mass with
additionally one third the mass of the spring.

Using this approximation, 0.005 kg of the mass can be removed from the calculated mass to yield
an adjusted calculated mass of 0.244 kg . The error in the mass calculation, due to the spring
constant error alone, of 0.001842kg is not enough to encompass the true value of 0.231kg . This
suggests error of other types, possibly in the angular frequency measurement or other sources.

If we were to instead use the true effective mass of 0.231kg + 0.005kg to calculate the spring
constant independently of the graph used to calculate it above, we would get an estimate of
16.3325N/m . This leads to two ways of estimating the spring constant, one using force over
displacement readings and one using the angular frequency and known mass.
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This spring and mass oscillation experiment was repeated with different masses. For each trial,
the spring had an unstretched length of 0.20m and mass of 0.015kg . Here is a table of data
describing each case:

Table 1: Various trials and data

Mass on the Equilibrium Angular Spring modulus Spring modulus
end (kg) length (m)  frequency (Hz) based on frequency (Vm) based on force (Vm)
0.131 0.28 10.88 16.1 16.9

0.172 0.30 9.59 16.3 17.0

0.231 0.335 8.32 16.3 17.3

0.311 0.382 7.19 16.3 16.9

0.431 0.45 6.15 16.5 16.9

0.731 0.622 4.79 16.9 17.3

0.931 0.735 4.28 17.1 17.5

If the spring was perfectly Hookean, the spring modulus would be constant and perfectly
independent from the equilibrium length. The fact that the spring modulus seems to increase
with longer stretch lengths suggests that the spring is not perfectly Hookean. However, the
amount by which the modulus changes is relatively small, suggesting that Hooke’s law is a decent
approximation for the system.

This can be further confirmed by measuring the force exerted at a variety of different stretch
lengths. Here is a graph of force over stretched length of the spring, with a much larger domain
than in Figure 2.

Figure 3: Force over stretch length
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The linear nature of this graph suggests that Hooke’s Law is a good approximation for the spring.
The slope of this line is 16.881 N/m, reasonably in line with the various calculated spring moduli
in the table above.

It is again interesting to note that upon close examination, the stretching forces tend to be
slightly greater than the compressing forces, pointing to the loss of energy over oscillation.
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2 Rubber bands

The same process as above was performed, except with a rubber band in place of a spring. The
rubber band was, with one end fixed, stretched by a mass of 0.231 kg hung onto it.

Here is a graph of displacement over time with a dampened harmonic motion curve
superimposed. The origin of displacement is again set to the equilibrium position of the mass
while it rests upon the rubber band.

Figure 4: Position over time
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It should be noted that the beginning of the curve likely does not fit due to how the oscillating
motion was initiated, so the section of data before the first local minimum was not considered in
the curve fit.

The motion is quickly dampened over time. In this case, the exponential decay constant was
0.504 Hz , making the oscillation amplitude have a half life of only 1.373s.

The angular frequency is estimated at 11.216 Hz. Again, since this is a non-linear model, the
statistical error is difficult to determine.

Given the mass on the rubber band was 0.231kg and the mass of the band itself was 0.002kg, it

can be estimated that the elastic modulus of the rubber band around this oscillation was
29.311 N/m.
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The force over stretch length can be plotted again here. This again refers to the total length of
the rubber band at any given time.
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Figure 5: Force over stretch length
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The superimposed line is not a linear regression of this data; it is a line of slope 29.311 N/m at an
arbitrary intercept, placed to highlight the non-linear nature of this graph. The slope, which is
the elastic modulus estimate from the oscillating data, does seem to roughly align with what a
linear regression would look like on this non-linear data.

The non-linear nature of the curve suggests that a rubber band does not have a Hookean
restoring force. This suggests that the initial assumption of the dampened harmonic curve fit
being applicable to this data was in fact a false assumption.

Further evidence can be found by comparing the elastic modulus from oscillations around
different stretch lengths based on different forces applied.

Table 2: Various trials and data

Mass on the

Equilibrium  Angular

Elastic modulus

Elastic modulus

end (kg) length (m)  frequency (Hz) based on frequency (Vm) based on force (Vm)
0.171 0.225 14.4 35.46 36.9
0.231 0.247 11.2 28.98 29.6
0.331 0.305 7.56 18.92 19.4
0.431 0.362 5.91 15.05 15.4
0.531 0.450 5.08 13.70 13.6
0.631 0.557 4.69 13.88 13.6
0.731 0.635 4.92 17.69 16.5

Based on these oscillating tests, the elastic modulus does depend significantly on the stretch

length.
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Taking it a step further, the force can be graphed over the stretch length.

Figure 6: Force over stretch length
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As can be seen, the force over length curve is not linear at all. Furthermore, the large difference
between stretching and compressing forces agrees with the very quick dampening of the
oscillation, because more work by gravity is done while stretching than is returned from the
spring while compressing.

This data can be compared to the effective spring constants found by various oscillating motion
setups. Here is a graph of the force divided by the displacement from the equilibrium length, over
stretched length. The calculated elastic moduli based on the oscillating motion is also plotted,
including one point for each calculation method.

Figure 7: Elastic modulus over stretch length
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While the data looks close numerically at the least and most stretched states, there is a
discrepancy for medium lengths. This could suggest that the rubber band in oscillation actually
behaves differently from the rubber band when being pulled over the course of about 7 seconds,
which is the time interval over which the force / distance data was collected.



