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Videos are were provided demonstrating the motion of various systems. Three videos were given
in particular, showcasing three systems.

e A cart was pulled by a stretched Hookean spring.
o A fan jet was attached to a cart propelling it forwards.
e A cart in motion splits into two halves.

The carts had low friction wheels and moved on a straight and level surface on a track that was
parallel to the camera’s focal plane. Two points on the track are of a known distance apart,
enabling the extraction of distance measurements from the video.

The videos will be tracked using software to extract numerical data about the cart locations
over time. Known Newtonian models will be applied to determine meaningful properties about
each system.

1 Cart Pulled By Spring 1.1 Quadratic Regression

Looking at the graph alone, it can be tempting
to use a quadratic regression to model the
motion. Such regression would have three
parameters:

A nearly Hookean spring pulled a cart across
the track. Here is the graph of its displacement
over time:

Figure 1: Cart Pulled By Spring Parameter Symbol Unit

2m Acceleration a Acceleration

Initial Velocity v Speed
Initial Displacement Axg Length

The equation using these parameters
would be:

Juetede[dsI(]

. 1
Azx(t) = 5at2 + vot + Axg

A numerical solver was used to find the optimal
parameters to best match the motion curve.

2s

a  0.932952m/s
vo  0.275475m/s
Azg —0.032451m

The residual standard error using this
model was 0.016040 m .
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Here is the residual plot:

Figure 2: Cart-Spring Quadratic Residuals
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An obvious pattern emerges, indicating
that a quadratic regression is not a good fit.

1.2 Sinusoidal Regression

Finding a better fit involves considering the
forces acting on the cart. The main force acting
on the cart was the spring force. The spring

began fully extended, meaning the acceleration ( )06 m

began at its maximum magnitude. As the cart
moved, the spring became less stretched and
the acceleration magnitude decreased.

Because the acceleration is negatively
proportional to displacement, the displacement
over time can be modeled by a sinusoidal
function with four parameters:
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Parameter Symbol Unit
Amplitude A Length
Angular Frequency w Frequency
Phase Shift o) None
Displacement Shift xQ Length

These parameters apply to the following

equation of estimated displacement over time:

Az(t) = Asin (wt — ¢) + zg

The numerical solver was used to optimize the
four parameters.

A 1.78904m
w 0.88987 Hz
¢ 3.10210

zo 1.78758m

The residual standard error using this
model was 0.000276 m , much lower than for the
quadratic model.

Here is the residual plot:

Figure 3: Cart-Spring Sinusoidal Residuals

While the chaotic nature of the graph
indicates a sinusoidal function is a decent
model, the residual values seem to slightly grow
in magnitude over time, besides a few initial
outliers. This is possibly due to air resistance
acting more prominently at higher speeds as
well as friction further degrading at the validity
of the model.

It is known that for spring-attached
objects following perfect sinusoidal motion, the

angular frequency of motion is equal to \/%

where k is the spring constant and M is the
mass of the object. It was given that the spring
constant was in fact 0.90N/m, and the mass
was in fact 1.51 kg, resulting in an angular
frequency of about 0.77(2028) Hz. The angular
frequency obtained from video analysis was
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0.88987 Hz , leaving the percent error around
15.3%. This is not great agreement, but it
makes sense considering the inaccuracies of the
video and the assumptions made in the analysis
process.

As a side comment, the residual plot for
the quadratic regression in Figure 2 seems to
resemble a cubic function. I wonder if a cubic
regression may result in the residual plot
looking like a quartic graph, and if any
polynomial regression would result in residuals
looking similar to a polynomial of one degree
higher. My train of thought comes from the
fact that any sinusoidal function can be broken
into a Taylor Series.

1.3 Friction and Air Resistance

The sinusoidal model neglects air resistance and
friction entirely. It is possible to measure the
level of air resistance and friction by
considering their respective forces.

F=—k(x—uz9) —uMg—bv

a—_—k(x—x)— - —v
=M o) = RI = 3T

v and a can be computed numerically by taking
finite differences in displacement Azx.
Meanwhile, ¥/Mm, xq, pg, and b/M are constants
that are to be found.

The numerical solver yielded these results:

k/mM o 0.84031 Hz?
g 1.75873m

g 0.052133 m/s2
b/ 1.3-1071Hz

b/M is extremely small, showing that air
resistance had almost no effect on the motion.
The friction term is low, but significant. By
assuming g = 9.81 m/s2 | the coefficient of
friction p can be determined to be about
0.005314, which is expected for a low friction
rolling cart.

Returning to sinusoidal motion, the
angular frequency is known to be \/W , about
0.916668 Hz according to these results. This is

even more far off from the true known value of
0.77(2028) Hz . This extra discrepancy is
possibly the result of the fact that finite
differences are more sensitive to small errors.

By contrast the value of zy agrees with
the value found in the sinusoidal regression.
This could be related to the fact that zg is a
value that is subtracted from z, while /M is a
scaling value, which makes it intuitively seem
more sensitive to error.

2 Cart Propelled By Fan

A fan jet was attached to a cart, propelling it
forward. Two trials were performed, each at
different fan speeds. Below is the graph of
displacement over time. The thin line is the low
speed trial, and the bold line is the high speed
trial.

Figure 4: Cart Propelled By Fan
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2.1 Quadratic Regression

The graphs appear to look somewhat quadratic
in nature. Quadratic motion would suggest
that the fan results in a constant force on the
cart. A quadratic regression was performed to
optimize the equation Az = %at2 + vot + Axp.
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Table 1: Quadratic Regression: Slower Fan

Figure 6: Fast Cart-Fan Quadratic Residuals
0.02m

a  0.0457670m/s
vo  0.0439673m/s
Azg  —0.0196277 m

The residual standard error for the slow
speed fan was 0.0008412m .

Table 2: Quadratic Regression: Faster Fan

P ™
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a  0.0658992m/s2
vo  0.0436374m/s
Azy —0.0138828 m

—0.02m

The residual standard error for the slow
speed fan was 0.0003753 m .

Looking at the parameters alone, it can be

reasoned that the cart with the faster fan
accelerates at a higher rate.

Here are the residual plots for each
regression:

Figure 5: Slow Cart-Fan Quadratic Residuals
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A clear pattern emerges from the residual
plots, suggesting that a quadratic regression is
not a good fit for the motion of the
fan-propelled cart.

This suggests that the cart’s acceleration
changes over time is not constant. A rough
graph of acceleration over time can be made
from finite differences in position over time.
Below is such a graph. A moving average over 2
seconds had to be applied to make the results
intelligible.

Figure 7: Fan-Cart Acceleration
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The circles are for the slow fan while the
squares are for the fast fan.
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The acceleration appears to decrease over
time. Additionally, the acceleration for the fast
fan cart is confirmed to be higher than for the
slow fan cart.

2.5m

2.2 Force Analysis

The fan moves air mass past it at some rate
%”. By Newton’s Second Law, the air
experiences some force %, which by the
product rule, equals m%’ + v%, where m
represents the total mass pulled through and v
is the air’s velocity relative to the ground.
Letting u be the speed of the air relative to the
cart, given the cart is moving at some velocity
V', the force f acting on the air from the fan is:

f=ma+ (u—V)m

By Newton’s Third Law, the force exerted
by the fan onto the air is equal to the opposite
of the force the air exerts on the fan/cart.
Thus, with capital letters representing cart
attributes and lowercase letters representing air
attributes,

MA =ma+ (u—V)m

A= %(maquume)

This result suggests that if air acceleration
and cart velocity were both negligible compared
to cart velocity, and the fan speed was
constant, the cart would move with roughly
constant acceleration. As demonstrated by the
invalidity of the quadratic regressions above,
this is not the case. Thus, it can be concluded
that either the air accelerates significantly, the
cart moves significantly compared to airspeed,
or a combination of both factors.

3 Exploding Moving Cart

A set of two carts were firmly attached and set
into motion. During motion, the carts each
exerted an impulse on each other, causing the
cart pair to separate into two. The carts moved
rightward, the left cart had mass 1.995kg , and

the right cart had mass 0.498 kg . Here is the
graph of their motion:

Figure 8: Exploding Cart Motion

Explosion
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3.1 Quadratic Regression

The only external force acting on the carts is
friction. Otherwise, the force between the carts
is the impulse of explosion, which is assumed to
happen so quickly that it might as well be
considered as an instantaneous velocity change
for each cart.

The motion of each cart is a piecewise
quadratic function. Let the heavier cart inherit
capital letters and the lighter cart inherit
lowercase letters. Let Xg, xg represent initial
position, vy represent initial velocity pre
explosion, V7, v represent initial velocity post
explosion, p represent the coefficient of friction,
and t, represent the time of explosion.

AX — Xo + vot + 2 pgt? t<te
Xo+ vote + Vit + sug (£ +t2) t>t.

Ay — 4 o+ vt + Fugt? t<te
2o + vote + vit + 3ug (82 +2) t>te
A numerical solver was used to solve for all of

the unknown parameters so the curves best
match the data. Here are the results:
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te  0.9365977s

Xy, —0.002280 m
2o  0.1856744m
vo  0.7098115m/s
Vi 0.5753316m/s
v1 1.1366653m/s
4 0.0044034

The standard residual error for the heavy

and light cart displacement models are
0.99-10~°m and 2.24 - 10~°> m respectively.

Here are the residual plots for each cart:

Figure 9: Heavy Cart Residuals
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Figure 10: Light Cart Residuals
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The clear quadratic nature of the residuals
suggests that the coefficient of friction may be
different for each cart, or some other force like
air resistance was also present.

3.2 Conservation of Momentum

The momentum change of the system over time
should be equal to the sum of external forces on
it, which in this case is friction only. The
internal force of the cart explosion should have
no impact on the momentum of the system.
Thus, the limit of the momentum as time
approaches the explosion instant should be the
same on the left and right hand sides.

dAX dAzx
=MV =M—- —
b v a "
Going by the model found above, the
derivatives shown here can be analytically
found.
v — vo + pgt  t < te
Vl + Mgt t> te
vo + gt t < te
v =
vl + Mgt t>te

The limit of the piecewise function at the
point between two pieces of it is equivalent to
the evaluation of those pieces at specific
instances. Thus,

lim p = (M +m) (vo + pgte)

t—te

lim p =M (Vi + pgte) +m (vo + pgte)

t—tt

The numerical values for both left and
right limits are known.

lim p = 1.870(423) kg - m/s

t—te

lim p = 1.814(709) kg -m/s
t—td
These two values are very close,
suggesting that the momentum change due to
the explosion is very small. What little
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momentum change there is could be a result of

the explosion spring being inefficient or air
resistance being more apparent during the
explosion.

3.3 Center Of Mass

The center of mass of a system acts like a
particle experiencing the sub of external forces
experienced on each component of the system.
Thus, due to friction we expect the center of
mass to follow a quadratic motion. Here is the
graph of the center of mass over time:

Sm

Figure 11: Motion of Center Of Mass
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The graph looks nearly linear because
friction is very low. The continuity of the graph
demonstrates that the center of mass moves
continuously with constant, nearly negligible
force. The explosion of the system barely
affected the motion of the center of mass, as the
time of explosion cannot even be distinguished
in this graph from its features alone.



